Web spam pages use various techniques to achieve
higher-than-deserved rankings in a search engine’s
results. While human experts can identify
spam, it is too expensive to manually evaluate a
large number of pages. Instead, we propose techniques
to semi-automatically separate reputable,
good pages from spam. We first select a small set
of seed pages to be evaluated by an expert. Once
we manually identify the reputable seed pages, we
use the link structure of the web to discover other
pages that are likely to be good. In this paper
we discuss possible ways to implement the seed
selection and the discovery of good pages. We
present results of experiments run on the World
Wide Web indexed by AltaVista and evaluate the
performance of our techniques. Our results show
that we can effectively filter out spam from a significant
fraction of the web, based on a good seed
set of less than 200 sites.
Search engine users click the results listings' top entry much more often than can be explained by relevancy ratings. Once again, people tend to stick to the defaults.
G. Feng, T. Liu, Y. Wang, Y. Bao, Z. Ma, X. Zhang, und W. Ma. Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR \textquotesingle06, ACM Press, (2006)
A. Borisov, M. Wardenaar, I. Markov, und M. de Rijke. The 41st International ACM SIGIR Conference on Research &\#38; Development in Information Retrieval, Seite 45--54. New York, NY, USA, ACM, (2018)