The program focused on the following four themes:
- Optimization: How and why can deep models be fit to observed (training) data?
- Generalization: Why do these trained models work well on similar but unobserved (test) data?
- Robustness: How can we analyze and improve the performance of these models when applied outside their intended conditions?
- Generative methods: How can deep learning be used to model probability distributions?
This course will introduce the student to classic neural network structures, Convolution Neural Networks (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Neural Networks (GRU), General Adversarial Networks (GAN) and reinforcement learning. Application of these architectures to computer vision, time series, security, natural language processing (NLP), and data generation will be covered. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction to mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras.
Learn AI from Stanford professors Christopher Manning, Andrew Ng, and Emma Brunskill. Free online course videos in Deep Learning, Reinforcement Learning, and Natural Language Processing.
My name is Daniel Holden. I'm a researcher at Ubisoft Montreal using Machine Learning for character animation and other applications. I'm also a Digital Artist and Writer. My interests are Computer Graphics, Game Development, Theory of Computation, and Programming Languages.
Making 27.91TB of research data available!
We've designed a distributed system for sharing enormous datasets - for researchers, by researchers. The result is a scalable, secure, and fault-tolerant repository for data, with blazing fast download speeds. Contact us at contact@academictorrents.com.
The purpose of AI Magazine is to disseminate timely and informative articles that represent the current state of the art in AI and to keep its readers posted on AAAI-related matters. The articles are selected for appeal to readers engaged in research and