The accumulation of solid waste and consumption of fossil fuels are two phenomenons which already have a major destructive effect on the environment. The lack of alternative solid waste management procedures and shortage of the development of renewable energy resources should be addressed in order to sustain environmental quality. Sawdust is a major waste product along the Lagos lagoon with cellulose one of the predominant structural components of sawdust. The bio-conversion of waste cellulose, a glucose biopolymer into glucose a fermentable sugar has been performed with cellulase from Aspergillus Niger. Delignified and non-delignified sawdust from five different trees along the Lagos Lagoon have been saccharified with A. niger cellulase. The saccharification of these sawdust materials have been performed at different incubation temperatures of 30°C, 40°C, 50°C and 60°C. Optimum saccharification of non-delignified and delignified cellulose from the various trees along the Lagos Lagoon were optimum saccharified at different temperatures resulting in different sugar concentrations produced. A temperature of 40°C was optimum for maximum degradation of non-delignified cellulose from al