J. Huggins, M. Kasprzak, T. Campbell, und T. Broderick. (2019)cite arxiv:1910.04102Comment: A python package for carrying out our validated variational inference workflow -- including doing black-box variational inference and computing the bounds we develop in this paper -- is available at https://github.com/jhuggins/viabel. The same repository also contains code for reproducing all of our experiments.
D. Burt, C. Rasmussen, und M. Van Der Wilk. Proceedings of the 36th International Conference on Machine Learning, Volume 97 von Proceedings of Machine Learning Research, Seite 862--871. Long Beach, California, USA, PMLR, (09--15 Jun 2019)
J. Hron, A. Matthews, und Z. Ghahramani. Proceedings of the 35th International Conference on Machine Learning, Volume 80 von Proceedings of Machine Learning Research, Seite 2019--2028. Stockholmsmässan, Stockholm Sweden, PMLR, (10--15 Jul 2018)
Y. Yang, R. Bamler, und S. Mandt. (2020)cite arxiv:2006.04240Comment: 8 pages + detailed supplement with additional qualitative and quantitative results.
T. van Rozendaal, G. Sautière, und T. Cohen. (2020)cite arxiv:2005.04064Comment: Accepted as a CVPR 2020 workshop paper: Workshop and Challenge on Learned Image Compression (CLIC).
C. Chu, K. Minami, und K. Fukumizu. (2020)cite arxiv:2004.01822Comment: ICLR 2020, Workshop on Integration of Deep Neural Models and Differential Equations.