bookmarks  1

  •  

    Research during the last decades has greatly increased our understanding of brain plasticity, i.e. how neuronal circuits can be modified by experience, learning and in response to brain lesions. Currently available neuroimaging techniques that make it possible to study the function of the human brain in vivo have had an important impact. Cross-modal plasticity during development is demonstrated by cortical reorganization in blind or deaf children. Early musical training has lasting effects in shaping the brain. Albeit the plasticity is largest during childhood, the adult brain retains a capacity for functional and structural reorganization that earlier has been underestimated. Resent research on Huntington's disease has revealed the possibility of environmental interaction even with dominant genes. Scientifically based training methods are now being applied in rehabilitation of patients after stroke and trauma, and in the sensory retraining techniques currently applied in the treatment of focal hand dystonia as well as in sensory re-education after nerve repair in hand surgery. There is evidence that frequent participation in challenging and stimulating activities is associated with reduced cognitive decline during aging. The current concept of brain plasticity has wide implication for areas outside neuroscience and for all human life.
    15 years ago by @philoscience
    (0)
     
     
  • ⟨⟨
  • 1
  • ⟩⟩

publications  

    No matching posts.
  • ⟨⟨
  • ⟩⟩