bookmarks  2

  •  

    Discovering patterns with great significance is an important problem in data mining discipline. An episode is defined to be a partially ordered set of events for consecutive and fixed-time intervals in a sequence. Most of previous studies on episodes consider only frequent episodes in a sequence of events (called simple sequence). In real world, we may find a set of events at each time slot in terms of various intervals (hours, days, weeks, etc.). We refer to such sequences as complex sequences. Mining frequent episodes in complex sequences has more extensive applications than that in simple sequences. In this paper, we discuss the problem on mining frequent episodes in a complex sequence. We extend previous algorithm MINEPI to MINEPI+ for episode mining from complex sequences. Furthermore, a memory-anchored algorithm called EMMA is introduced for the mining task. Experimental evaluation on both real-world and synthetic data sets shows that EMMA is more efficient than MINEPI+.
    15 years ago by @saurabhgupte
    (0)
     
     
  •  

    In this paper, we introduce the class of k-partite episodes, which are time-series patterns of the form ?A1, . . . ,Ak? for sets Ai (1 = i = k) of events meaning that, in an input event sequence, every event of Ai is followed by every event of Ai+1 for every 1 = i < k. Then, we present a backtracking algorithm Kpar and its modification Kpar2 that find all of the frequent k-partite episodes from an input event sequence without duplication. By theoretical analysis, we show that these two algorithms run in polynomial delay and polynomial space in total input size.
    15 years ago by @saurabhgupte
    (0)
     
     
  • ⟨⟨
  • 1
  • ⟩⟩

publications  

    No matching posts.
  • ⟨⟨
  • ⟩⟩