In this tutorial, I will first teach you how to build a recurrent neural network (RNN) with a single layer, consisting of one single neuron, with PyTorch and Google Colab. I will also show you how…
An official PyTorch implementation of “Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation” (NeurIPS 2019) by Risto Vuorio*, Shao-Hua Sun*, Hexiang Hu, and Joseph J. Lim - shaohua0116/MMAML-Classification
Carnegie Mellon University Course: 11-785, Intro to Deep Learning Offering: Fall 2019 Notebook: http://deeplearning.cs.cmu.edu/document/recitation/recitation...
Carnegie Mellon University Course: 11-785, Intro to Deep Learning Offering: Fall 2019 For more information, please visit: http://deeplearning.cs.cmu.edu/ Con...
IPython notebooks with demo code intended as a companion to the book "Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control" by Steven L. Brunton and J. Nathan Kutz - GitHub - dynamicslab/databook_python: IPython notebooks with demo code intended as a companion to the book "Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control" by Steven L. Brunton and J. Nathan Kutz
In this episode, we dive into Variational Autoencoders, a class of neural networks that can learn to compress data completely unsupervised! VAE's are a very ...
M. Finzi, K. Wang, and A. Wilson. (2020)cite arxiv:2010.13581Comment: NeurIPS 2020. Code available at https://github.com/mfinzi/constrained-hamiltonian-neural-networks.
D. Galvin. (2014)cite arxiv:1406.7872Comment: Notes prepared to accompany a series of tutorial lectures given by the author at the 1st Lake Michigan Workshop on Combinatorics and Graph Theory, Western Michigan University, March 15--16 2014.