Isaac Gym offers a high performance learning platform to train policies for wide variety of robotics tasks directly on GPU. Both physics simulation and the neural network policy training reside on GPU and communicate by directly passing data from physics buffers to PyTorch tensors without ever going through any CPU bottlenecks. This leads to blazing fast training times for complex robotics tasks on a single GPU with 2-3 orders of magnitude improvements compared to conventional RL training that uses a CPU based simulator and GPU for neural networks.
8,9 Millionen virtuelle Österreicher gehen in einem Computerprogramm arbeiten, zur Schule oder bleiben zuhause - und bilden eine Orientierung für die ...
T. Licht, L. Dohmen, P. Schmitz, L. Schmidt, and H. Luczak. Proceedings of the European Simulation and Modelling Conference (Paris 2004), page 188-195 *** Best Paper Award ***. Ghent, EUROSIS-ETI, (2004)
A. Künzer, L. Schmidt, C. Schlick, and H. Luczak. Autonome Produktionszellen: Komplexe Produktionsprozesse flexibel automatisieren, Springer, Berlin, (2006)
T. Licht, L. Schmidt, C. Schlick, L. Dohmen, and H. Luczak. The Future of Product Development: Proceedings of the 17th CIRP Design Conference (Berlin 2007), page 543–554. Berlin, Springer, (2007)