Аннотация
This paper presents an investigation on the optimum number of neighbors for mobile ad hoc networks
(MANETs). The MANETs are self-configuring and self-organizing networks. In such a network, energyconstrained mobile nodes share limited bandwidth to send their packets to the destinations. The mobile nodes
have a limited transmission range and they rely on their neighbors to deliver their packets. Hence, the mobile
nodes must be associated with the required (i.e., optimum) number of neighbors. As the number of neighbors
is varied, a trade-off exists between the network connectivity and available bandwidth per mobile node. To
investigate this issue, we consider Dynamic Source Routing (DSR) as the routing protocol and IEEE 802.11
as the MAC layer protocol in this work. We consider both static and dynamic scenarios in this work. We
simulated the ad hoc networks via network simulator (NS-2) and the simulation results show that there exists
an optimum number of neighbors for the static case. We also show that mobility has a grave impact on the
performance of the MANETs in terms of network throughput, end-to-end delay, energy consumption, and
packet loss. Hence, we need to increase the number of neighbors under mobility conditions. However, there
is no global optimum number of neighbors for the mobility case.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)