@sdo

Performance of Recommender Algorithms on Top-n Recommendation Tasks

, , и . Proceedings of the Fourth ACM Conference on Recommender Systems, стр. 39--46. New York, NY, USA, ACM, (2010)
DOI: 10.1145/1864708.1864721

Аннотация

In many commercial systems, the 'best bet' recommendations are shown, but the predicted rating values are not. This is usually referred to as a top-N recommendation task, where the goal of the recommender system is to find a few specific items which are supposed to be most appealing to the user. Common methodologies based on error metrics (such as RMSE) are not a natural fit for evaluating the top-N recommendation task. Rather, top-N performance can be directly measured by alternative methodologies based on accuracy metrics (such as precision/recall). An extensive evaluation of several state-of-the art recommender algorithms suggests that algorithms optimized for minimizing RMSE do not necessarily perform as expected in terms of top-N recommendation task. Results show that improvements in RMSE often do not translate into accuracy improvements. In particular, a naive non-personalized algorithm can outperform some common recommendation approaches and almost match the accuracy of sophisticated algorithms. Another finding is that the very few top popular items can skew the top-N performance. The analysis points out that when evaluating a recommender algorithm on the top-N recommendation task, the test set should be chosen carefully in order to not bias accuracy metrics towards non-personalized solutions. Finally, we offer practitioners new variants of two collaborative filtering algorithms that, regardless of their RMSE, significantly outperform other recommender algorithms in pursuing the top-N recommendation task, with offering additional practical advantages. This comes at surprise given the simplicity of these two methods.

Описание

Performance of recommender algorithms on top-n recommendation tasks

Линки и ресурсы

тэги

сообщество

  • @jaeschke
  • @nosebrain
  • @dblp
  • @sdo
@sdo- тэги данного пользователя выделены