,

Non-Perturbative Nature of a Broad Class of Non-Equilibrium Phase Transitions

, , , , , и .
Abstract Book of the XXIII IUPAP International Conference on Statistical Physics, Genova, Italy, (9-13 July 2007)

Аннотация

In this talk I will construct a field theoretical (Langevin) description of a class of out-of-equilibrium phase transitions usually called parity conserving, directed-percolation 2 (DP2), or generalized voter class). The critical behavior of this type of systems is out of the reach of standard perturbative renormalization group approaches. I will illustrate how the theory can be renormalized by employing a non-perturbative method, leading to the conclusion that there exists a genuinely non-perturbative fixed point, i.e. a critical point which does not seem to be Gaussian in any dimension. Direct numerical integration of the Langevin equation confirms the renormalization-group predictions. References: O. Al Hammal, H. Chate, I. Dornic, and M.A. Munoz, Phys. Rev. Lett. 94, 230601 (2005). L. Canet, H. Chate, B. Delamotte, I. Dornic, and M.A: Munoz, Phys. Rev. Lett. 95, 100601 (2005). I. Dornic, H. Chate, and M. A. Munoz, Phys. Rev. Lett. 94, 100601 (2005).

тэги

Пользователи данного ресурса

  • @statphys23

Комментарии и рецензии