Аннотация
In this talk I will construct a field theoretical (Langevin) description of
a class of out-of-equilibrium phase transitions usually called parity
conserving, directed-percolation 2 (DP2), or generalized voter class).
The critical behavior of this type of systems is out of the reach of standard
perturbative renormalization group approaches. I will illustrate how the
theory can be renormalized by employing a non-perturbative method, leading to
the conclusion that there exists a genuinely non-perturbative fixed point,
i.e. a critical point which does not seem to be Gaussian in any
dimension. Direct numerical integration of the Langevin equation
confirms the renormalization-group predictions.
References:
O. Al Hammal, H. Chate, I. Dornic, and M.A. Munoz,
Phys. Rev. Lett. 94, 230601 (2005).
L. Canet, H. Chate, B. Delamotte, I. Dornic, and M.A: Munoz,
Phys. Rev. Lett. 95, 100601 (2005).
I. Dornic, H. Chate, and M. A. Munoz,
Phys. Rev. Lett. 94, 100601 (2005).
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)