Аннотация
We propose a continuous normalizing flow for sampling from the
high-dimensional probability distributions of Quantum Field Theories in
Physics. In contrast to the deep architectures used so far for this task, our
proposal is based on a shallow design and incorporates the symmetries of the
problem. We test our model on the $\phi^4$ theory, showing that it
systematically outperforms a realNVP baseline in sampling efficiency, with the
difference between the two increasing for larger lattices. On the largest
lattice we consider, of size $3232$, we improve a key metric, the
effective sample size, from 1% to 66% w.r.t. the realNVP baseline.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)