Task Embedding Temporal Convolution Networks for Transfer Learning Problems in Renewable Power Time Series Forecast
J. Schreiber, S. Vogt, und B. Sick. European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD): Applied Data Science Track, Seite 118--134. Springer, (2021)
DOI: 10.1007/978-3-030-86514-6_8
%0 Conference Paper
%1 schreiber2021task
%A Schreiber, Jens
%A Vogt, Stephan
%A Sick, Bernhard
%B European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD): Applied Data Science Track
%D 2021
%I Springer
%K imported itegpub
%P 118--134
%R 10.1007/978-3-030-86514-6_8
%T Task Embedding Temporal Convolution Networks for Transfer Learning Problems in Renewable Power Time Series Forecast
@inproceedings{schreiber2021task,
added-at = {2022-01-07T10:37:59.000+0100},
author = {Schreiber, Jens and Vogt, Stephan and Sick, Bernhard},
biburl = {https://www.bibsonomy.org/bibtex/2c635397886da4fd06265596c5b6503de/ies},
booktitle = {European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD): Applied Data Science Track},
doi = {10.1007/978-3-030-86514-6_8},
interhash = {ae69698ec98e250bee09027bf11c6f6e},
intrahash = {c635397886da4fd06265596c5b6503de},
keywords = {imported itegpub},
pages = {118--134},
publisher = {Springer},
timestamp = {2022-01-07T10:37:59.000+0100},
title = {Task Embedding Temporal Convolution Networks for Transfer Learning Problems in Renewable Power Time Series Forecast},
year = 2021
}