@alex_ruff

A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms

, , , , und . Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, 1, Seite 519-528. (2006)
DOI: 10.1109/CVPR.2006.19

Zusammenfassung

This paper presents a quantitative comparison of several multi-view stereo reconstruction algorithms. Until now, the lack of suitable calibrated multi-view image datasets with known ground truth (3D shape models) has prevented such direct comparisons. In this paper, we first survey multi-view stereo algorithms and compare them qualitatively using a taxonomy that differentiates their key properties. We then describe our process for acquiring and calibrating multiview image datasets with high-accuracy ground truth and introduce our evaluation methodology. Finally, we present the results of our quantitative comparison of state-of-the-art multi-view stereo reconstruction algorithms on six benchmark datasets. The datasets, evaluation details, and instructions for submitting new models are available online at http://vision.middlebury.edu/mview.

Beschreibung

IEEE Xplore - A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms

Links und Ressourcen

Tags

Community

  • @dblp
  • @alex_ruff
@alex_ruffs Tags hervorgehoben