@ijtsrd

Stock Market Prediction using Machine Learning

. INTERNATIONAL JOURNAL OF TREND IN SCIENTIFIC RESEARCH AND DEVELOPMENT, 6 (3): 2046-2061 (March 2022)

Abstract

Stock market prediction is a typical task to forecast the upcoming stock values. It is very difficult to forecast because of unbalanced nature of stocks. In this work, an attempt is made for prediction of stock market trend. This research aims to combine multiple existing techniques into a much more robust prediction model which can handle various scenarios in which investment can be beneficial. By combing both techniques, this prediction model can provide more accurate and flexible recommendations. However instead of using those traditional methods, we approached the problems using machine learning techniques. We tried to revolutionize the way people address data processing problems in stock market by predicting the behavior of the stocks. In fact, if we can predict how the stock will behave in the short term future we can queue up our transactions earlier and be faster than everyone else. In theory, this allows us to maximize our profit without having the need to be physically located close to the data sources. We examined three main models. Firstly we used a complete prediction using a moving average. Secondly we used a LSTM model and finally a model called ARIMA model. The only motive is to increase the accuracy of predictive the stock market price. Each of those models was applied on real stock market data and checked whether it could return profit. Subham Kumar Gupta | Dr. Bhuvana J | Dr. M N Nachappa "Stock Market Prediction using Machine Learning" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-6 | Issue-3 , April 2022, URL: https://www.ijtsrd.com/papers/ijtsrd49868.pdf Paper URL: https://www.ijtsrd.com/computer-science/other/49868/stock-market-prediction-using-machine-learning/subham-kumar-gupta

Links and resources

Tags