Аннотация
We present a novel multivariate classification
technique based on Genetic Programming. The technique
is distinct from Genetic Algorithms and offers several
advantages compared to Neural Networks and Support
Vector Machines. The technique optimises a set of
human-readable classifiers with respect to some
user-defined performance measure. We calculate the
Vapnik-Chervonenkis dimension of this class of learning
machines and consider a practical example: the search
for the Standard Model Higgs Boson at the LHC. The
resulting classifier is very fast to evaluate,
human-readable, and easily portable. The software may
be downloaded at:
http://cern.ch/~cranmer/PhysicsGP.html.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)