@miki

O VI Emission Imaging of a Galaxy with the Hubble Space Telescope: a Warm Gas Halo Surrounding the Intense Starburst SDSS J115630.63+500822.1

, , , , , and . (2016)cite arxiv:1606.04536Comment: Accepted by the Astrophysical Journal. 25 pages, 11 figures. Section 7 presents calculated properties of warm halo gas.

Abstract

We report results from a new HST study of the OVI 1032,1038\AA\ doublet in emission around intensely star-forming galaxies. The programme aims to characterize the energy balance in starburst galaxies and gas cooling in the difficult-to-map coronal temperature regime of 2-5 x $10^5$K. We present the first resolved image of gas emission in the OVI line. Our target, SDSS J1156+5008, is very compact in the continuum but displays OVI emission to radii of 23 kpc. The surface brightness profile is well fit by an exponential with a scale of 7.5kpc. This is ten times the size of the photoionized gas, and we estimate that 1/6 the total OVI luminosity comes from resonantly scattered continuum radiation. Spectroscopy - which closely resembles a stacked sample of archival spectra - confirms the OVI emission, and determines the column density and outflow velocity from blueshifted absorption. The combination of measurements enables several new calculations with few assumptions. The OVI regions fill only ~$10^-3$ of the volume. By comparing the cooling time with the cloud sound-crossing time, the cooling distance with the size, and the pressure in the OVI and nebular gas, we conclude that the OVI-bearing gas cannot have been lifted to the scale height at this temperature, and must be cooling in situ through this coronal temperature regime. The coronal phase contains ~1% of the ionized mass, and its kinetic energy is currently ~1% of the budget set by supernova feedback. However a much larger amount of the gas must have cooled through this phase during the star formation episode. The outflow exceeds the escape velocity and the gas may become unbound, but it will recombine before it escapes and become visible to Lyman (and OI) spectroscopy. The mapping of this gas represents a crucial step in further constraining galaxy formation scenarios and guiding the development of future satellites.

Description

[1606.04536] O VI Emission Imaging of a Galaxy with the Hubble Space Telescope: a Warm Gas Halo Surrounding the Intense Starburst SDSS J115630.63+500822.1

Links and resources

Tags