@awolff

Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bends

, , , und . Computational Geometry: Theory and Applications, (2019)Special Issue on the 34th European Workshop on Computational Geometry.
DOI: 10.1016/j.comgeo.2019.07.006

Zusammenfassung

We study the following classes of beyond-planar graphs: 1-planar, IC-planar, and NIC-planar graphs. These are the graphs that admit a 1-planar, IC-planar, and NIC-planar drawing, respectively. A drawing of a graph is 1-planar if every edge is crossed at most once. A 1-planar drawing is IC-planar if no two pairs of crossing edges share a vertex. A 1-planar drawing is NIC-planar if no two pairs of crossing edges share two vertices. We study the relations of these beyond-planar graph classes (beyond-planar graphs is a collective term for the primary attempts to generalize the planar graphs) to right-angle crossing (RAC) graphs that admit compact drawings on the grid with few bends. We present four drawing algorithms that preserve the given embeddings. First, we show that every $n$-vertex NIC-planar graph admits a NIC-planar RAC drawing with at most one bend per edge on a grid of size $O(n) O(n)$. Then, we show that every $n$-vertex 1-planar graph admits a 1-planar RAC drawing with at most two bends per edge on a grid of size $O(n^3) O(n^3)$. Finally, we make two known algorithms embedding-preserving; for drawing 1-planar RAC graphs with at most one bend per edge and for drawing IC-planar RAC graphs straight-line.

Links und Ressourcen

Tags

Community

  • @awolff
  • @j_z
  • @fabianlipp
  • @chaplick
@awolffs Tags hervorgehoben