Abstract
Lazy Bayesian rule has demonstrated outstanding classification accuracy. However, it has high computational overheads when large numbers of instances are classified from a single training set. We compare lazy Bayesian rule and the tree-augmented Bayesian classifier, and present a new heuristic lazy Bayesian rule classifier that combines elements of the two. It requires less computation than lazy Bayesian rule, but demonstrates similar prediction accuracy.
Users
Please
log in to take part in the discussion (add own reviews or comments).