Turning procedural and structural knowledge into programs has established methodologies, but what about turning knowledge into probabilistic models? I explore a few examples of what such a process could look like.
While implementing a quick toy example of Crane and Sawhney's really great Monte Carlo Geometry Processing paper, the question arose about whether a quick function I grabbed from The Internet to equally distribute points on a sphere was correct or not. Since it's absolutely the crux of the method, this is an important question! This notebook performs a rather unscientific check for equal distribution of points on the surface of a sphere. It uses the first algorithm from MathWorld
While implementing a quick toy example of Crane and Sawhney's really great Monte Carlo Geometry Processing paper, the question arose about whether a quick function I grabbed from The Internet to equally distribute points on a sphere was correct or not. Since it's absolutely the crux of the method, this is an important question! This notebook performs a rather unscientific check for equal distribution of points on the surface of a sphere. It uses the first algorithm from MathWorld: Sphere Point Picking. Foll