Abstract
In this report, we will be interested at Dynamic Bayesian Network (DBNs) as a model that tries to incorporate temporal dimension with uncertainty. We start with basics of DBN where we especially focus in Inference and Learning concepts and algorithms. Then we will present different levels and methods of creating DBNs as well as approaches of incorporating temporal dimension in static Bayesian network.
Users
Please
log in to take part in the discussion (add own reviews or comments).