Abstract
We consider the problem of classifying documents not by topic, but by overall
sentiment, e.g., determining whether a review is positive or negative. Using
movie reviews as data, we find that standard machine learning techniques
definitively outperform human-produced baselines. However, the three machine
learning methods we employed (Naive Bayes, maximum entropy classification, and
support vector machines) do not perform as well on sentiment classification as
on traditional topic-based categorization. We conclude by examining factors
that make the sentiment classification problem more challenging.
Users
Please
log in to take part in the discussion (add own reviews or comments).