Abstract
We develop and defend the thesis that the Hilbert space formalism of quantum
mechanics is a new theory of probability. The theory, like its classical
counterpart, consists of an algebra of events, and the probability measures
defined on it. The construction proceeds in the following steps: (a) Axioms for
the algebra of events are introduced following Birkhoff and von Neumann. All
axioms, except the one that expresses the uncertainty principle, are shared
with the classical event space. The only models for the set of axioms are
lattices of subspaces of inner product spaces over a field K. (b) Another axiom
due to Soler forces K to be the field of real, or complex numbers, or the
quaternions. We suggest a probabilistic reading of Soler's axiom. (c) Gleason's
theorem fully characterizes the probability measures on the algebra of events,
so that Born's rule is derived. (d) Gleason's theorem is equivalent to the
existence of a certain finite set of rays, with a particular orthogonality
graph (Wondergraph). Consequently, all aspects of quantum probability can be
derived from rational probability assignments to finite "quantum gambles". We
apply the approach to the analysis of entanglement, Bell inequalities, and the
quantum theory of macroscopic objects. We also discuss the relation of the
present approach to quantum logic, realism and truth, and the measurement
problem.
Users
Please
log in to take part in the discussion (add own reviews or comments).