LIBLINEAR is a linear classifier for data with millions of instances and features. It supports L2-regularized logistic regression (LR), L2-loss linear SVM, and L1-loss linear SVM.
Main features of LIBLINEAR include
* Same data format as LIBSVM, our general-purpose SVM solver, and also similar usage
* Multi-class classification: 1) one-vs-the rest, 2) Crammer & Singer
* Cross validation for model selection
* Probability estimates (logistic regression only)
* Weights for unbalanced data
* MATLAB/Octave, Java interfaces
Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, und E. Hovy. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Seite 1480--1489. San Diego, California, Association for Computational Linguistics, (Juni 2016)
Y. Kim, K. Stratos, und D. Kim. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Seite 643--653. Vancouver, Canada, Association for Computational Linguistics, (Juli 2017)
M. Paris, und R. Jäschke. Proceedings of the 14th International Conference on Knowledge Science, Engineering and Management, Volume 12816 von Lecture Notes in Artificial Intelligence, Seite 1--14. Springer, (2021)
V. Sinha, S. Rao, und V. Balasubramanian. (2018)cite arxiv:1803.02781Comment: 8 pages, 5 tables, 1 figure, KDD Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM) 2018.
L. Hettinger, A. Zehe, A. Dallmann, und A. Hotho. INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft, Seite 191-204. Bonn, Gesellschaft für Informatik e.V., (2019)