Engineer friends often ask me: Graph Deep Learning sounds great, but are there any big commercial success stories? Is it being deployed in practical applications? Besides the obvious ones–recommendation systems at Pinterest, Alibaba and Twitter–a slightly nuanced success story is the Transformer architecture, which has taken the NLP industry by storm. Through this post, I want to establish links between Graph Neural Networks (GNNs) and Transformers. I’ll talk about the intuitions behind model architectures in the NLP and GNN communities, make connections using equations and figures, and discuss how we could work together to drive progress.
Gephi is an open-source software for visualizing and analyzing large networks graphs. Gephi uses a 3D render engine to display graphs in real-time and speed up the exploration. Use Gephi to explore, analyse, spatialise, filter, cluterize, manipulate and export all types of graphs.
Brad Fitzpatrick recently wrote an elegant and important post about the Social Graph, a term used by Facebook to describe their social network. In his post, Fitzpatrick defines "social graph" as "the global mapping of everybody and how they're related". He went on to outline the problems with it, as well as a broad set of goals going forward. One problem is that currently you need to have different logins for different social networks. Another issue is portability and ownership of an individual's information, explicitly and implicitly revealed while using social networks. As was recently asserted in the Social...
Gephi is an open-source software for visualizing and analyzing large networks graphs. Gephi uses a 3D render engine to display graphs in real-time and speed up the exploration. Use Gephi to explore, analyse, spatialise, filter, cluterize, manipulate and export all types of graphs.
Visualization of graph data is incredibly challenging, particularly when it comes to extremely large, scale-free graphs and social networks. A few simple searches on the Web and you will find some mesmerizing and very cool images. Perhaps the most cited...
J. Zhang, Y. Dong, Y. Wang, J. Tang, und M. Ding. Proceedings of the 28th International Joint Conference on Artificial Intelligence, Seite 4278–4284. AAAI Press, (10.08.2019)
S. Wang, L. Hu, Y. Wang, X. He, Q. Sheng, M. Orgun, L. Cao, F. Ricci, und P. Yu. (2021)cite arxiv:2105.06339Comment: Accepted by IJCAI 2021 Survey Track, copyright is owned to IJCAI. The first systematic survey on graph learning based recommender systems. arXiv admin note: text overlap with arXiv:2004.11718.
D. Gibson, J. Kleinberg, und P. Raghavan. Proceedings of the ninth ACM conference on Hypertext and hypermedia : links, objects, time and space---structure in hypermedia systems links, objects, time and space---structure in hypermedia systems - HYPERTEXT \textquotesingle98, ACM Press, (1998)