From post

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Provenance Tracking for End-to-End Machine Learning Pipelines., , и . WWW (Companion Volume), стр. 1512. ACM, (2023)Differential Data Quality Verification on Partitioned Data., , , , , , , и . ICDE, стр. 1940-1945. IEEE, (2019)Lightweight Inspection of Data Preprocessing in Native Machine Learning Pipelines., , и . CIDR, www.cidrdb.org, (2021)Automating and Optimizing Data-Centric What-If Analyses on Native Machine Learning Pipelines., , и . Proc. ACM Manag. Data, 1 (2): 128:1-128:26 (2023)Red Onions, Soft Cheese and Data: From Food Safety to Data Traceability for Responsible AI., , , и . IEEE Data Eng. Bull., 47 (1): 63-81 (2024)Towards Interactively Improving ML Data Preparation Code via "Shadow Pipelines"., , и . DEEM@SIGMOD, стр. 7-11. ACM, (2024)Towards data-centric what-if analysis for native machine learning pipelines., , и . DEEM@SIGMOD, стр. 3:1-3:5. ACM, (2022)Proactively Screening Machine Learning Pipelines with ARGUSEYES., , , , и . SIGMOD Conference Companion, стр. 91-94. ACM, (2023)Instrumentation and Analysis of Native ML Pipelines via Logical Query Plans.. CoRR, (2024)Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code!, и . CoRR, (2024)