From post

Multiresolution Analysis for Minimal Energy Cr-Surfaces on Powell-Sabin Type Meshes.

, , , и . MMCS, том 5862 из Lecture Notes in Computer Science, стр. 209-223. Springer, (2008)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Filling holes with shape preserving conditions., , , и . Math. Comput. Simul., (2015)Optimal Knots Allocation in Smoothing Splines using intelligent system. Application in bio-medical signal processing. ., , , и . IWBBIO, стр. 289-295. Copicentro Editorial, (2013)Determination of alignments in existing roads by using spline techniques., , и . Math. Comput. Simul., (2014)Construction of Surfaces with Parallelism Conditions., , и . Numer. Algorithms, 33 (1-4): 331-342 (2003)A hole filling method for surfaces by using C1-Powell-Sabin splines. Estimation of the smoothing parameters., , , и . Math. Comput. Simul., 81 (10): 2150-2160 (2011)A hole filling method for explicit and parametric surfaces by using C1-Powell Sabin splines., , , и . Math. Comput. Simul., (2014)The Frenet frame beyond classical differential geometry: Application to cartographic generalization of roads., , , , и . Math. Comput. Simul., 79 (12): 3556-3566 (2009)Approximation of Surfaces by Fairness Bicubic Splines., и . Adv. Comput. Math., 20 (1-3): 87-103 (2004)Multiresolution Analysis for Minimal Energy Cr-Surfaces on Powell-Sabin Type Meshes., , , и . MMCS, том 5862 из Lecture Notes in Computer Science, стр. 209-223. Springer, (2008)3D fuzzy data approximation by fuzzy smoothing bicubic splines., , , и . Mathematics and Computers in Simulation, (2019)