From post

"Lesion-habitat" radiomics to distinguish radiation necrosis from tumor recurrence on post-treatment MRI in metastatic brain tumors.

, , , , , и . Medical Imaging: Computer-Aided Diagnosis, том 11314 из SPIE Proceedings, SPIE, (2020)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Radiomics of the lesion habitat on pre-treatment MRI predicts response to chemo-radiation therapy in Glioblastoma., , , , , , и . Medical Imaging: Computer-Aided Diagnosis, том 10950 из SPIE Proceedings, стр. 109500B. SPIE, (2019)Networking Research Innovations for Telesurgery: A Systematic Review., , , , , , , , , и 1 other автор(ы). SDS, стр. 1-8. IEEE, (2022)A radiomics approach to distinguish non-contrast enhancing tumor from vasogenic edema on multi-parametric pre-treatment MRI scans for glioblastoma tumors., , , , , , и . Medical Imaging: Computer-Aided Diagnosis, том 12033 из SPIE Proceedings, SPIE, (2022)"Lesion-habitat" radiomics to distinguish radiation necrosis from tumor recurrence on post-treatment MRI in metastatic brain tumors., , , , , и . Medical Imaging: Computer-Aided Diagnosis, том 11314 из SPIE Proceedings, SPIE, (2020)Deformation heterogeneity radiomics to predict molecular subtypes of pediatric Medulloblastoma on routine MRI., , , , , , , , , и 3 other автор(ы). Medical Imaging: Computer-Aided Diagnosis, том 10950 из SPIE Proceedings, стр. 109501E. SPIE, (2019)Can Tumor Location on Pre-treatment MRI Predict Likelihood of Pseudo-Progression vs. Tumor Recurrence in Glioblastoma? - A Feasibility Study., , , , , , , , , и 2 other автор(ы). Frontiers Comput. Neurosci., (2020)Spatial-And-Context Aware (SpACe) "Virtual Biopsy" Radiogenomic Maps to Target Tumor Mutational Status on Structural MRI., , , , , , , , , и 1 other автор(ы). MICCAI (2), том 12262 из Lecture Notes in Computer Science, стр. 305-314. Springer, (2020)Knowledge Management Model Supported by Social Networks. Case: University-Enterprise., , и . KMO, стр. 361-373. Springer, (2013)Adversarial Debiasing techniques towards 'fair' skin lesion classification., , и . NER, стр. 1-4. IEEE, (2023)