From post

ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data.

, , , , , , и . Nucleic Acids Res., 45 (Database-Issue): D43-D50 (2017)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

A tool for top-down performance analysis of GPU-accelerated applications., , и . PPoPP, стр. 415-416. ACM, (2020)Centimani: Enabling Fast AI Accelerator Selection for DNN Training with a Novel Performance Predictor., , , , , , , и . USENIX ATC, стр. 1203-1221. USENIX Association, (2024)Tools for top-down performance analysis of GPU-accelerated applications., , и . ICS, стр. 26:1-26:12. ACM, (2020)Understanding the GPU Microarchitecture to Achieve Bare-Metal Performance Tuning., , , , , и . PPoPP, стр. 31-43. ACM, (2017)Low overhead and context sensitive profiling of CPU-accelerated applications., , , и . ICS, стр. 1:1-1:13. ACM, (2022)A Tool for Performance Analysis of GPU-Accelerated Applications., и . CGO, стр. 282. IEEE, (2019)Multi-Classes Feature Engineering with Sliding Window for Purchase Prediction in Mobile Commerce., , , и . ICDM Workshops, стр. 1048-1054. IEEE Computer Society, (2015)GPA: A GPU Performance Advisor Based on Instruction Sampling., , , и . CGO, стр. 115-125. IEEE, (2021)GVProf: a value profiler for GPU-based clusters., , , , и . SC, стр. 89. IEEE/ACM, (2020)Measurement and Analysis of GPU-Accelerated OpenCL Computations on Intel GPUs., , , , и . ProTools@SC, стр. 26-35. IEEE, (2021)