From post

Large-scale parcellation of the ventricular system using convolutional neural networks.

, , , , , , и . Biomedical Applications in Molecular, Structural, and Functional Imaging, том 10953 из SPIE Proceedings, стр. 109530N. SPIE, (2019)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Automated femur segmentation from computed tomography images using a deep neural network., , , , , и . Biomedical Applications in Molecular, Structural, and Functional Imaging, том 11600 из SPIE Proceedings, SPIE, (2021)Unsupervised brain lesion segmentation from MRI using a convolutional autoencoder., , , , и . CoRR, (2018)Fast and robust femur segmentation from computed tomography images for patient-specific hip fracture risk screening., , , , , , , , , и . Comput. methods Biomech. Biomed. Eng. Imaging Vis., 11 (2): 253-265 (марта 2023)Large-scale parcellation of the ventricular system using convolutional neural networks., , , , , , и . Biomedical Applications in Molecular, Structural, and Functional Imaging, том 10953 из SPIE Proceedings, стр. 109530N. SPIE, (2019)Publisher Correction: Stroke genetics informs drug discovery and risk prediction across ancestries, , , , , , , , , и 91 other автор(ы). Nature, 612 (7938): E7-E7 (2022)Genetic improvement of runtime and its fitness landscape in a bioinformatics application., , , , и . GECCO (Companion), стр. 1521-1528. ACM, (2017)Unsupervised brain lesion segmentation from MRI using a convolutional autoencoder., , , , и . Image Processing, том 10949 из SPIE Proceedings, стр. 109491H. SPIE, (2019)The use of predictive models in dynamic treatment planning., , , , и . ISCC, стр. 242-247. IEEE Computer Society, (2017)Predicting changes in quality of life for patients in vocational rehabilitation., , , , и . EAIS, стр. 1-8. IEEE, (2018)Structural covariability hubs in old age., , , , и . NeuroImage, (2019)