Author of the publication

Satisfiability to Coverage in Presence of Fairness, Matroid, and Global Constraints.

, , , , , and . ICALP, volume 297 of LIPIcs, page 88:1-88:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2024)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed. You can also use the button next to the name to display some publications already assigned to the person.

 

Other publications of authors with the same name

A Polynomial Kernel for Bipartite Permutation Vertex Deletion., , , , , and . Algorithmica, 84 (11): 3246-3275 (2022)Parameterized complexity of perfectly matched sets., , , and . Theor. Comput. Sci., (May 2023)Satisfiability to Coverage in Presence of Fairness, Matroid, and Global Constraints., , , , , and . ICALP, volume 297 of LIPIcs, page 88:1-88:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2024)Integrating Industry 4.0 and circular economy: a review., , and . J. Enterp. Inf. Manag., 35 (3): 885-917 (2022)Further Exploiting c-Closure for FPT Algorithms and Kernels for Domination Problems., , , , and . SIAM J. Discret. Math., 37 (4): 2626-2669 (December 2023)On the Complexity of Mixed Dominating Set., , , and . CSR, volume 11532 of Lecture Notes in Computer Science, page 262-274. Springer, (2019)Max-SAT with Cardinality Constraint Parameterized by the Number of Clauses., , , , , , and . LATIN (2), volume 14579 of Lecture Notes in Computer Science, page 223-237. Springer, (2024)Further Exploiting c-Closure for FPT Algorithms and Kernels for Domination Problems., , , , and . STACS, volume 219 of LIPIcs, page 39:1-39:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2022)The Parameterized Complexity of Cycle Packing: Indifference is Not an Issue., , , and . Algorithmica, 81 (9): 3803-3841 (2019)A Polynomial Kernel for Bipartite Permutation Vertex Deletion., , , , and . IPEC, volume 214 of LIPIcs, page 23:1-23:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2021)