From post

Design of C 2 Spatial Pythagorean-Hodograph Quintic Spline Curves by Control Polygons.

, , , и . Curves and Surfaces, том 6920 из Lecture Notes in Computer Science, стр. 253-269. Springer, (2010)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Shape-Preserving Approximation by Space Curves., и . Numer. Algorithms, 27 (3): 237-264 (2001)Construction of G2 spatial interpolants with prescribed arc lengths., , и . J. Comput. Appl. Math., (мая 2024)Spline surfaces with C1 quintic PH isoparametric curves., , и . Comput. Aided Geom. Des., (2020)Design of C 2 Spatial Pythagorean-Hodograph Quintic Spline Curves by Control Polygons., , , и . Curves and Surfaces, том 6920 из Lecture Notes in Computer Science, стр. 253-269. Springer, (2010)Control point modifications that preserve the Pythagorean-hodograph nature of planar quintic curves., , и . J. Comput. Appl. Math., (2025)Local Hierarchical h-Refinements in IgA Based on Generalized B-Splines., , и . MMCS, том 8177 из Lecture Notes in Computer Science, стр. 341-363. Springer, (2012)Compactly Supported Splines with Tension Properties on a Three-Direction Mesh., , и . MMCS, том 5862 из Lecture Notes in Computer Science, стр. 93-110. Springer, (2008)Quasi-interpolation in isogeometric analysis based on generalized B-splines., , , и . Comput. Aided Geom. Des., 27 (8): 656-668 (2010)On the spectrum of stiffness matrices arising from isogeometric analysis., , , , и . Numerische Mathematik, 127 (4): 751-799 (2014)