From post

Towards a computer aided diagnosis (CAD) for brain MRI glioblastomas tumor exploration based on a deep convolutional neuronal networks (D-CNN) architectures.

, , , , , и . Multim. Tools Appl., 80 (1): 899-919 (2021)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Deep Convolutional Encoder-Decoder algorithm for MRI brain reconstruction., , , , , и . Medical Biol. Eng. Comput., 59 (7-8): 85-106 (2021)Review of Computer Aided-Diagnosis (CAD) Systems for MRI Gliomas brain tumors explorations based on Machine Learning and Deep learning., , , и . ATSIP, стр. 1-6. IEEE, (2022)Deep Learning Approaches for Dermoscopic Image-Based Skin Cancer Diagnosis., , и . ATSIP, стр. 1-7. IEEE, (2024)Deep Transfer Learning (DTL) Based-Framework for an Accurate Multi-classification of MRI Brain Tumors., , , , и . CW, стр. 86-93. IEEE, (2023)Computer Aided Diagnosis (CAD) tool for MS lesions exploration In multimodal brain MRI., , , , и . ATSIP, стр. 1-6. IEEE, (2022)EXplainable Artificial Intelligence (XAI) for MRI brain tumor diagnosis: A survey., , , и . CW, стр. 171-178. IEEE, (2023)Review of MRI brain tumor segmentation and MGMT promoter classification methods on BraTs dataset based on Deep learning., , , и . ATSIP, стр. 249-254. IEEE, (2024)Histogram equalization-based techniques for contrast enhancement of MRI brain Glioma tumor images: Comparative study., , , и . ATSIP, стр. 1-6. IEEE, (2018)Towards a computer aided diagnosis (CAD) for brain MRI glioblastomas tumor exploration based on a deep convolutional neuronal networks (D-CNN) architectures., , , , , и . Multim. Tools Appl., 80 (1): 899-919 (2021)Glioblastomas brain Tumor Segmentation using Optimized U-Net based on Deep Fully Convolutional Networks (D-FCNs)., , , и . ATSIP, стр. 1-6. IEEE, (2020)