From post

Second-Order Optimization for Non-Convex Machine Learning: An Empirical Study

, , и . (2017)cite arxiv:1708.07827Comment: 21 pages, 11 figures. Restructure the paper and add experiments.

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Newton-Type Methods for Non-Convex Optimization Under Inexact Hessian Information., , и . CoRR, (2017)Large batch size training of neural networks with adversarial training and second-order information., , , и . CoRR, (2018)A Local Perspective on Community Structure in Multilayer Networks., , , и . CoRR, (2015)Mapping the Similarities of Spectra: Global and Locally-biased Approaches to SDSS Galaxy Data., , и . CoRR, (2016)Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers., , , и . ICML, том 162 из Proceedings of Machine Learning Research, стр. 8774-8795. PMLR, (2022)Multiplicative Noise and Heavy Tails in Stochastic Optimization., и . ICML, том 139 из Proceedings of Machine Learning Research, стр. 4262-4274. PMLR, (2021)Good Classifiers are Abundant in the Interpolating Regime., , и . AISTATS, том 130 из Proceedings of Machine Learning Research, стр. 3376-3384. PMLR, (2021)Adversarially-Trained Deep Nets Transfer Better: Illustration on Image Classification., , , , и . ICLR, OpenReview.net, (2021)Tensor-CUR decompositions for tensor-based data., , и . KDD, стр. 327-336. ACM, (2006)Skip-Gram - Zipf + Uniform = Vector Additivity., , и . ACL (1), стр. 69-76. Association for Computational Linguistics, (2017)