From post

Design Principles of Convolutional Neural Networks for Multimedia Forensics.

, и . Media Watermarking, Security, and Forensics, стр. 77-86. Society for Imaging Science and Technology, (2017)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Defenses Against Multi-sticker Physical Domain Attacks on Classifiers., и . ECCV Workshops (1), том 12535 из Lecture Notes in Computer Science, стр. 202-219. Springer, (2020)A Deep Learning Approach to MRI Scanner Manufacturer and Model Identification., , и . Media Watermarking, Security, and Forensics, Society for Imaging Science and Technology, (2020)Robust median filtering forensics based on the autoregressive model of median filtered residual., , , и . APSIPA, стр. 1-9. IEEE, (2012)Forensically determining the order of signal processing operations., , и . WIFS, стр. 162-167. IEEE, (2013)Blind forensics of contrast enhancement in digital images., и . ICIP, стр. 3112-3115. IEEE, (2008)Augmented convolutional feature maps for robust CNN-based camera model identification., и . ICIP, стр. 4098-4102. IEEE, (2017)Data Reduction, Compression, and Recovery for Online Performance Monitoring., , и . CLOUD, стр. 256-263. IEEE, (2019)Computationally efficient demosaicing filter estimation for forensic camera model identification., и . ICIP, стр. 151-155. IEEE, (2016)Anti-forensics of chromatic aberration., и . Media Watermarking, Security, and Forensics, том 9409 из SPIE Proceedings, стр. 94090M. SPIE, (2015)A Generic Approach Towards Image Manipulation Parameter Estimation Using Convolutional Neural Networks., и . IH&MMSec, стр. 147-157. ACM, (2017)