From post

Augmentation de données pour la classification de séries temporelles par réseaux de neurones profonds résiduels.

, , , , и . EGC, том E-35 из RNTI, стр. 375-376. Éditions RNTI, (2019)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Deep learning for time series classification. (Apprentissage profond pour la classification des séries temporelles).. University of Upper Alsace, Mulhouse, France, (2020)Knowledge-driven Biometric Authentication in Virtual Reality., , и . CHI Extended Abstracts, стр. 1-10. ACM, (2020)Augmentation de données pour la classification de séries temporelles par réseaux de neurones profonds résiduels., , , , и . EGC, том E-35 из RNTI, стр. 375-376. Éditions RNTI, (2019)Accurate and interpretable evaluation of surgical skills from kinematic data using fully convolutional neural networks., , , , и . Int. J. Comput. Assist. Radiol. Surg., 14 (9): 1611-1617 (2019)Smooth Perturbations for Time Series Adversarial Attacks., , , , , , , , , и . PAKDD (1), том 13280 из Lecture Notes in Computer Science, стр. 485-496. Springer, (2022)Adversarial Attacks on Deep Neural Networks for Time Series Classification., , , , и . IJCNN, стр. 1-8. IEEE, (2019)Automatic Alignment of Surgical Videos Using Kinematic Data., , , , , и . AIME, том 11526 из Lecture Notes in Computer Science, стр. 104-113. Springer, (2019)Deep learning for time series classification: a review, , , , и . Data Mining and Knowledge Discovery, 33 (4): 917--963 (01.07.2019)ShapeDBA: Generating Effective Time Series Prototypes Using ShapeDTW Barycenter Averaging., , , , , , , и . AALTD@ECML/PKDD, том 14343 из Lecture Notes in Computer Science, стр. 127-142. Springer, (2023)Deep Neural Network Ensembles for Time Series Classification., , , , и . IJCNN, стр. 1-6. IEEE, (2019)