From post

From Perception to Programs: Regularize, Overparameterize, and Amortize.

, и . ICML, том 202 из Proceedings of Machine Learning Research, стр. 33616-33631. PMLR, (2023)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Sampling for Bayesian Program Learning., , и . NIPS, стр. 1289-1297. (2016)CrossBeam: Learning to Search in Bottom-Up Program Synthesis., , , и . ICLR, OpenReview.net, (2022)Leveraging Language to Learn Program Abstractions and Search Heuristics., , , и . ICML, том 139 из Proceedings of Machine Learning Research, стр. 11193-11204. PMLR, (2021)From Perception to Programs: Regularize, Overparameterize, and Amortize., и . ICML, том 202 из Proceedings of Machine Learning Research, стр. 33616-33631. PMLR, (2023)Scaling Neural Program Synthesis with Distribution-Based Search., , , , , и . AAAI, стр. 6623-6630. AAAI Press, (2022)Learning to Infer Graphics Programs from Hand-Drawn Images., , , и . NeurIPS, стр. 6062-6071. (2018)Learning Libraries of Subroutines for Neurally-Guided Bayesian Program Induction., , , , и . NeurIPS, стр. 7816-7826. (2018)DeepSynth: Scaling Neural Program Synthesis with Distribution-based Search., , , и . J. Open Source Softw., 7 (78): 4151 (октября 2022)Learning to Learn Programs from Examples: Going Beyond Program Structure., и . IJCAI, стр. 1638-1645. ijcai.org, (2017)Modeling Expertise with Neurally-Guided Bayesian Program Induction., , , и . CogSci, стр. 3114. cognitivesciencesociety.org, (2019)