From post

Deep learning vs. conventional methods for automatic quantification of total tumor radioactivity in positron projection images of mouse xenograft tumors.

, , , , , , и . Biomedical Applications in Molecular, Structural, and Functional Imaging, том 12036 из SPIE Proceedings, SPIE, (2022)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Realtime TRUS/MRI Fusion Targeted-Biopsy for Prostate Cancer: A Clinical Demonstration of Increased Positive Biopsy Rates., , , , , , , , и . Prostate Cancer Imaging, том 6367 из Lecture Notes in Computer Science, стр. 52-62. Springer, (2010)Global structure constrained local shape prior estimation for medical image segmentation., , , , и . Comput. Vis. Image Underst., 117 (9): 1017-1026 (2013)A Mixed Reality Guidance System for Robot Assisted Laparoscopic Radical Prostatectomy., , , , , , , , и . OR 2.0/CARE/CLIP/ISIC@MICCAI, том 11041 из Lecture Notes in Computer Science, стр. 164-174. Springer, (2018)Deeply-supervised CNN for prostate segmentation., , , , и . IJCNN, стр. 178-184. IEEE, (2017)Deep Learning Framework for Epithelium Density Estimation in Prostate Multi-Parametric Magnetic Resonance Imaging., , , , , , , , , и . ISBI, стр. 438-441. IEEE, (2020)A Sparse Convolutional Autoencoder for Joint Feature Extraction and Clustering of Metastatic Prostate Cancer Images., , , , , , , и . AIME (2), том 14845 из Lecture Notes in Computer Science, стр. 9-20. Springer, (2024)VISTA3D: Versatile Imaging SegmenTation and Annotation model for 3D Computed Tomography., , , , , , , , , и 4 other автор(ы). CoRR, (2024)Atlas based AAM and SVM model for fully automatic MRI prostate segmentation., , , , , , , , , и 3 other автор(ы). EMBC, стр. 2881-2585. IEEE, (2014)Active appearance model and deep learning for more accurate prostate segmentation on MRI., , , , , , , , , и 1 other автор(ы). Image Processing, том 9784 из SPIE Proceedings, стр. 97842I. SPIE, (2016)Deep learning vs. conventional methods for automatic quantification of total tumor radioactivity in positron projection images of mouse xenograft tumors., , , , , , и . Biomedical Applications in Molecular, Structural, and Functional Imaging, том 12036 из SPIE Proceedings, SPIE, (2022)