From post

Distributed Training of Deep Neural Network Acoustic Models for Automatic Speech Recognition: A comparison of current training strategies.

, , , , , и . IEEE Signal Process. Mag., 37 (3): 39-49 (2020)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Speech Emotion Recognition with Multiscale Area Attention and Data Augmentation., , , и . ICASSP, стр. 6319-6323. IEEE, (2021)Differential analysis of rna methylation sequencing data., , , , и . GlobalSIP, стр. 41-42. IEEE, (2013)Sketching the distribution of transcriptomic features on RNA transcripts with Travis coordinates., , , , , , , и . BIBM, стр. 1536-1542. IEEE Computer Society, (2015)Exploiting vocal-source features to improve ASR accuracy for low-resource languages., , , , и . INTERSPEECH, стр. 805-809. ISCA, (2014)Acoustic Modeling with Bootstrap and Restructuring Based on Full Covariance., , , , , и . INTERSPEECH, стр. 1697-1700. ISCA, (2011)Change Detection from Remote Sensing to Guide OpenStreetMap Labeling., , , , , , , , , и 3 other автор(ы). ISPRS Int. J. Geo Inf., 9 (7): 427 (2020)Distributed Deep Learning Strategies for Automatic Speech Recognition., , , , , , и . ICASSP, стр. 5706-5710. IEEE, (2019)Modeling Variance Variation in a Variable Parameter HMM Framework for Noise Robust Speech Recognition., и . ICASSP (1), стр. 1117-1120. IEEE, (2006)Data augmentation for deep convolutional neural network acoustic modeling., , и . ICASSP, стр. 4545-4549. IEEE, (2015)Federated Acoustic Modeling for Automatic Speech Recognition., , и . ICASSP, стр. 6748-6752. IEEE, (2021)