Author of the publication

Infinets: The Parallel Syntax for Non-wellfounded Proof-Theory.

, and . TABLEAUX, volume 11714 of Lecture Notes in Computer Science, page 297-316. Springer, (2019)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed. You can also use the button next to the name to display some publications already assigned to the person.

 

Other publications of authors with the same name

Linear logic with the least and greatest fixed points : truth semantics, complexity and a parallel syntax. (La logique linéaire avec les plus petits et les plus grands points fixes : la sémantique de vérité, la complexité, et une syntaxe parallèle).. Paris Cité University, France, (2022)A proof theory of (omega-)context-free languages, via non-wellfounded proofs., and . CoRR, (2024)A computational model of planarian regeneration., , and . Int. J. Parallel Emergent Distributed Syst., 32 (4): 331-347 (2017)Infinets: The Parallel Syntax for Non-wellfounded Proof-Theory., and . TABLEAUX, volume 11714 of Lecture Notes in Computer Science, page 297-316. Springer, (2019)A proof theory of right-linear (ω-)grammars via cyclic proofs., and . LICS, page 30:1-30:14. ACM, (2024)Decision Problems for Linear Logic with Least and Greatest Fixed Points., , and . FSCD, volume 228 of LIPIcs, page 20:1-20:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2022)A Proof Theory of (ømega-)Context-Free Languages, via Non-wellfounded Proofs., and . IJCAR (2), volume 14740 of Lecture Notes in Computer Science, page 237-256. Springer, (2024)Phase Semantics for Linear Logic with Least and Greatest Fixed Points., , and . FSTTCS, volume 250 of LIPIcs, page 35:1-35:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2022)Canonical proof-objects for coinductive programming: infinets with infinitely many cuts., , and . PPDP, page 7:1-7:15. ACM, (2021)Comparing Infinitary Systems for Linear Logic with Fixed Points., , and . FSTTCS, volume 284 of LIPIcs, page 40:1-40:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2023)