From post

Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions.

, , , , , и . J. Intell. Manuf., 34 (2): 587-613 (февраля 2023)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

A bearing fault diagnosis method without fault data in new working condition combined dynamic model with deep learning., , , , , и . Adv. Eng. Informatics, (2022)Adaptive multispace adjustable sparse filtering: A sparse feature learning method for intelligent fault diagnosis of rotating machinery., , , , , и . Eng. Appl. Artif. Intell., (апреля 2023)A domain adaptation method for bearing fault diagnosis using multiple incomplete source data., , , , , и . J. Intell. Manuf., 35 (2): 777-791 (февраля 2024)Remaining useful life prediction combined dynamic model with transfer learning under insufficient degradation data., , , , , и . Reliab. Eng. Syst. Saf., (августа 2023)The two-stage RUL prediction across operation conditions using deep transfer learning and insufficient degradation data., , , , и . Reliab. Eng. Syst. Saf., (2022)Deep multiple auto-encoder with attention mechanism network: A dynamic domain adaptation method for rotary machine fault diagnosis under different working conditions., , , , , и . Knowl. Based Syst., (2022)Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions., , , , , и . J. Intell. Manuf., 34 (2): 587-613 (февраля 2023)