From post

A Coupled Manifold Optimization Framework to Jointly Model the Functional Connectomics and Behavioral Data Spaces.

, , , , и . IPMI, том 11492 из Lecture Notes in Computer Science, стр. 605-616. Springer, (2019)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

A Coupled Manifold Optimization Framework to Jointly Model the Functional Connectomics and Behavioral Data Spaces., , , , и . IPMI, том 11492 из Lecture Notes in Computer Science, стр. 605-616. Springer, (2019)A Generative-Discriminative Basis Learning Framework to Predict Clinical Severity from Resting State Functional MRI Data., , , , и . MICCAI (3), том 11072 из Lecture Notes in Computer Science, стр. 163-171. Springer, (2018)A Unified Bayesian Approach to Extract Network-Based Functional Differences from a Heterogeneous Patient Cohort., , , и . CNI@MICCAI, том 10511 из Lecture Notes in Computer Science, стр. 60-69. Springer, (2017)Integrating Neural Networks and Dictionary Learning for Multidimensional Clinical Characterizations from Functional Connectomics Data., , , , и . MICCAI (3), том 11766 из Lecture Notes in Computer Science, стр. 709-717. Springer, (2019)A Matrix Autoencoder Framework to Align the Functional and Structural Connectivity Manifolds as Guided by Behavioral Phenotypes., , , , , и . MICCAI (7), том 12907 из Lecture Notes in Computer Science, стр. 625-636. Springer, (2021)A Matrix Autoencoder Framework to Align the Functional and Structural Connectivity Manifolds as Guided by Behavioral Phenotypes., , , , , , и . CoRR, (2021)M-GCN: A Multimodal Graph Convolutional Network to Integrate Functional and Structural Connectomics Data to Predict Multidimensional Phenotypic Characterizations., , , , , и . MIDL, том 143 из Proceedings of Machine Learning Research, стр. 119-130. PMLR, (2021)A Deep-Generative Hybrid Model to Integrate Multimodal and Dynamic Connectivity for Predicting Spectrum-Level Deficits in Autism., , , , , , и . MICCAI (7), том 12267 из Lecture Notes in Computer Science, стр. 437-447. Springer, (2020)A joint network optimization framework to predict clinical severity from resting state functional MRI data., , , , и . NeuroImage, (2020)Accounting for motion in resting-state fMRI: What part of the spectrum are we characterizing in autism spectrum disorder?, , , , , и . NeuroImage, (2022)