From post

Competing AI: How does competition feedback affect machine learning?

, , , и . AISTATS, том 130 из Proceedings of Machine Learning Research, стр. 1693-1701. PMLR, (2021)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

SkinCon: A skin disease dataset densely annotated by domain experts for fine-grained model debugging and analysis., , , , и . CoRR, (2023)Grading of Prostate Whole-slide Images Using Weak Self-supervised Learning., , и . IEEECONF, стр. 1439-1443. IEEE, (2022)Collecting data when missingness is unknown: a method for improving model performance given under-reporting in patient populations., , , , и . CHIL, том 209 из Proceedings of Machine Learning Research, стр. 229-242. PMLR, (2023)Why adaptively collected data have negative bias and how to correct for it., , , и . CoRR, (2017)How Does Mixup Help With Robustness and Generalization?, , , , и . ICLR, OpenReview.net, (2021)Competing AI: How does competition feedback affect machine learning?, , , и . AISTATS, том 130 из Proceedings of Machine Learning Research, стр. 1693-1701. PMLR, (2021)Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning., и . AISTATS, том 151 из Proceedings of Machine Learning Research, стр. 8780-8802. PMLR, (2022)When and How Mixup Improves Calibration., , , и . ICML, том 162 из Proceedings of Machine Learning Research, стр. 26135-26160. PMLR, (2022)Regulating AI Adaptation: An Analysis of AI Medical Device Updates., , , , и . CoRR, (2024)Provable Membership Inference Privacy., , , и . Trans. Mach. Learn. Res., (2024)