From post

How to Learn from Unlabeled Volume Data: Self-supervised 3D Context Feature Learning.

, , и . MICCAI (6), том 11769 из Lecture Notes in Computer Science, стр. 649-657. Springer, (2019)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Additive Gaussian Processes., , и . NIPS, стр. 226-234. (2011)How to Learn from Unlabeled Volume Data: Self-supervised 3D Context Feature Learning., , и . MICCAI (6), том 11769 из Lecture Notes in Computer Science, стр. 649-657. Springer, (2019)When Does Bone Suppression And Lung Field Segmentation Improve Chest X-Ray Disease Classification?, , , , , , , , и . ISBI, стр. 1362-1366. IEEE, (2019)Multi-Resolution 3D Convolutional Neural Networks for Automatic Coronary Centerline Extraction in Cardiac CT Angiography Scans., , и . ISBI, стр. 91-95. IEEE, (2021)Motion artifact recognition and quantification in coronary CT angiography using convolutional neural networks., , , , , , и . Medical Image Anal., (2019)Machine-learning-based clinical plaque detection using a synthetic plaque lesion model for coronary CTA., , , , , , и . Medical Imaging: Computer-Aided Diagnosis, том 11597 из SPIE Proceedings, SPIE, (2021)Dynamic Pacemaker Artifact Removal (DyPAR) from CT Data using CNNs., , , , , , и . MIDL, том 102 из Proceedings of Machine Learning Research, стр. 347-357. PMLR, (2019)Change Surfaces for Expressive Multidimensional Changepoints and Counterfactual Prediction., , , и . J. Mach. Learn. Res., (2019)Approximations for Binary Gaussian Process Classification, и . Journal of Machine Learning Research, (октября 2008)Learning metal artifact reduction in cardiac CT images with moving pacemakers., , , , и . Medical Image Anal., (2020)