From post

Analysis of an Efficient Reduction Algorithm for Random Regular Expressions Based on Universality Detection.

, и . CSR, том 12730 из Lecture Notes in Computer Science, стр. 206-222. Springer, (2021)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Weakly-Unambiguous Parikh Automata and Their Link to Holonomic Series., , , и . ICALP, том 168 из LIPIcs, стр. 114:1-114:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2020)One Drop of Non-Determinism in a Random Deterministic Automaton., , , и . STACS, том 254 из LIPIcs, стр. 19:1-19:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2023)Systèmes de fonctions holonomes: application à la théorie des automates. (Systems of holonomic functions: application in automata theory).. Gustave Eiffel University, Champs-sur-Marne, France, (2021)Uniform Random Expressions Lack Expressivity., , и . MFCS, том 138 из LIPIcs, стр. 51:1-51:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2019)On the Degeneracy of Random Expressions Specified by Systems of Combinatorial Equations., , и . DLT, том 12086 из Lecture Notes in Computer Science, стр. 164-177. Springer, (2020)Analysis of an Efficient Reduction Algorithm for Random Regular Expressions Based on Universality Detection., и . CSR, том 12730 из Lecture Notes in Computer Science, стр. 206-222. Springer, (2021)A canonical tree decomposition for order types, and some applications., , , и . CoRR, (2024)Absorbing Patterns in BST-Like Expression-Trees., и . STACS, том 187 из LIPIcs, стр. 48:1-48:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2021)A Canonical Tree Decomposition for Chirotopes., , , и . SoCG, том 293 из LIPIcs, стр. 23:1-23:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2024)New Analytic Techniques for Proving the Inherent Ambiguity of Context-Free Languages.. FSTTCS, том 250 из LIPIcs, стр. 41:1-41:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2022)