From post

Folding Polyominoes with Holes into a Cube

, , , , , , , , , , , и . Proceedings of the 31st Canadian Conference on Computational Geometry, CCCG 2019, August 8-10, 2019, University of Alberta, Edmonton, Alberta, Canada, стр. 164--170. (2019)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Embedding Ray Intersection Graphs and Global Curve Simplification., , и . GD, том 12868 из Lecture Notes in Computer Science, стр. 358-371. Springer, (2021)The Embroidery Problem., , , , , , и . CCCG, (2008)Minimum Scan Cover and Variants: Theory and Experiments, , , , , , , и . ACM J. Exp. Algorithmics, (2022)Folding polyominoes with holes into a cube, , , , , , , , , и 1 other автор(ы). Computational Geometry, (2021)An Optimal Algorithm to Compute the Inverse Beacon Attraction Region., , , и . SoCG, том 99 из LIPIcs, стр. 55:1-55:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2018)Universal Coating by 3D Hybrid Programmable Matter., , и . SIROCCO, том 14662 из Lecture Notes in Computer Science, стр. 384-401. Springer, (2024)Minimum Scan Cover and Variants - Theory and Experiments., , , , , , , и . SEA, том 190 из LIPIcs, стр. 4:1-4:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2021)Local Redesigning of Airspace Sectors, и . CoRR, (2013)Convex Hull Formation for Programmable Matter., , , , , и . ICDCN, стр. 2:1-2:10. ACM, (2020)Folding Polyominoes into (Poly)Cubes, , , , , , , , и . Int. J. Comput. Geom. Appl., 28 (3): 197--226 (2018)