Program performance is always a concern, even in this era of high-performance hardware. This article, the first in a two-part series, guides you around the many pitfalls associated with benchmarking Java code. Part 2 covers the statistics of benchmarking and offers a framework for performing Java benchmarking. Because almost all new languages are virtual machine-based, the general principles the article describes have broad significance for the programming community at large.
D. Aumayr, S. Marr, E. Gonzalez Boix, и H. Mössenböck. Proceedings of the 16th ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes, стр. 157--171. ACM, (октября 2019)
R. Roberts, S. Marr, M. Homer, и J. Noble. 33rd European Conference on Object-Oriented Programming, том 134 из ECOOP'19, стр. 5:1--5:28. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, (15.07.2019)
D. Ramage, A. Rafferty, и C. Manning. Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing, стр. 23--31. Stroudsburg, PA, USA, Association for Computational Linguistics, (2009)
P. Szmeja, M. Ganzha, M. Paprzycki, и W. Pawlowski. Advances in Data Analysis with Computational Intelligence Methods, том 738 из Studies in Computational Intelligence, стр. 87-125. Springer, (2018)
D. Ramage, A. Rafferty, и C. Manning. Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing, стр. 23--31. Association for Computational Linguistics, (2009)