Engineer friends often ask me: Graph Deep Learning sounds great, but are there any big commercial success stories? Is it being deployed in practical applications? Besides the obvious ones–recommendation systems at Pinterest, Alibaba and Twitter–a slightly nuanced success story is the Transformer architecture, which has taken the NLP industry by storm. Through this post, I want to establish links between Graph Neural Networks (GNNs) and Transformers. I’ll talk about the intuitions behind model architectures in the NLP and GNN communities, make connections using equations and figures, and discuss how we could work together to drive progress.
J. Zhang, Y. Dong, Y. Wang, J. Tang, and M. Ding. Proceedings of the 28th International Joint Conference on Artificial Intelligence, page 4278–4284. AAAI Press, (Aug 10, 2019)
S. Wang, L. Hu, Y. Wang, X. He, Q. Sheng, M. Orgun, L. Cao, F. Ricci, and P. Yu. (2021)cite arxiv:2105.06339Comment: Accepted by IJCAI 2021 Survey Track, copyright is owned to IJCAI. The first systematic survey on graph learning based recommender systems. arXiv admin note: text overlap with arXiv:2004.11718.