@thoni

Large-scale Taxonomy Induction Using Entity and Word Embeddings

, , , and . Proceedings of the International Conference on Web Intelligence, page 81--87. New York, NY, USA, ACM, (2017)
DOI: 10.1145/3106426.3106465

Abstract

Taxonomies are an important ingredient of knowledge organization, and serve as a backbone for more sophisticated knowledge representations in intelligent systems, such as formal ontologies. However, building taxonomies manually is a costly endeavor, and hence, automatic methods for taxonomy induction are a good alternative to build large-scale taxonomies. In this paper, we propose TIEmb, an approach for automatic unsupervised class subsumption axiom extraction from knowledge bases using entity and text embeddings. We apply the approach on the WebIsA database, a database of subsumption relations extracted from the large portion of the World Wide Web, to extract class hierarchies in the Person and Place domain.

Description

Large-scale taxonomy induction using entity and word embeddings

Links and resources

Tags

community

  • @thoni
  • @dblp
@thoni's tags highlighted