Please log in to take part in the discussion (add own reviews or comments).
Cite this publication
More citation styles
- please select -
%0 Conference Paper
%1 conf/vlsit/KellerVDTZDGK22
%A Keller, Ben
%A Venkatesan, Rangharajan
%A Dai, Steve
%A Tell, Stephen G.
%A Zimmer, Brian
%A Dally, William J.
%A Gray, C. Thomas
%A Khailany, Brucek
%B VLSI Technology and Circuits
%D 2022
%I IEEE
%K dblp
%P 16-17
%T A 17-95.6 TOPS/W Deep Learning Inference Accelerator with Per-Vector Scaled 4-bit Quantization for Transformers in 5nm.
%U http://dblp.uni-trier.de/db/conf/vlsit/vlsit2022.html#KellerVDTZDGK22
%@ 978-1-6654-9772-5
@inproceedings{conf/vlsit/KellerVDTZDGK22,
added-at = {2022-08-04T00:00:00.000+0200},
author = {Keller, Ben and Venkatesan, Rangharajan and Dai, Steve and Tell, Stephen G. and Zimmer, Brian and Dally, William J. and Gray, C. Thomas and Khailany, Brucek},
biburl = {https://www.bibsonomy.org/bibtex/22df26de4f9fa311a129c4b067756b433/dblp},
booktitle = {VLSI Technology and Circuits},
crossref = {conf/vlsit/2022},
ee = {https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830277},
interhash = {6ca4b01923c37b8c2b4626fc6713cad3},
intrahash = {2df26de4f9fa311a129c4b067756b433},
isbn = {978-1-6654-9772-5},
keywords = {dblp},
pages = {16-17},
publisher = {IEEE},
timestamp = {2024-04-09T19:13:06.000+0200},
title = {A 17-95.6 TOPS/W Deep Learning Inference Accelerator with Per-Vector Scaled 4-bit Quantization for Transformers in 5nm.},
url = {http://dblp.uni-trier.de/db/conf/vlsit/vlsit2022.html#KellerVDTZDGK22},
year = 2022
}